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Metzger[preceding paper, Phys. Rev. E69, 053301(2004)] put forward a number of arguments against the
Gaussian force distribution concluded in the investigations by Ngan[Phys. Rev. E68, 011301(2003)] and by
some previous workers. It is shown here that, with a more proper choice for the constraint in the free energy
minimization, the Shannon entropy approach can predict three-dimensional force distributions that are in much
better agreement with simulated distributions. In two-dimensional packings, if one accepts a Gaussian distri-
bution at some finite strain in a Hookean force-law situation, then the superposition principle of linear elasticity
predicts that the same Gaussian distribution will be maintained at vanishing strains. This argument forms an
interesting dilemma with Metzger’s argument about the noninvolvement of the force law in statically deter-
minate packings.
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I. INTRODUCTION

In his Comment[1], Metzger questions the applicability
of my predicted Gaussian distribution for two dimensions
(2D) and the nearly Gaussian distribution for 3D, to situa-
tions when the grain deformation is vanishingly small but
when the contact forces are large so thatkfl.3 and 2 in 2D
and 3D, respectively(kfl=normalized contact force). He ar-
gues that the probabilities of the large forces are not calcu-
lated to a high enough precision to unambiguously verify the
Gaussian or nearly-Gaussuan distribution. While I share
Metzger’s view on this, one must not neglect that the prob-
abilities of small forces, which are abundant and are there-
fore calculated to a high precision, are well described by the
Gaussian form in 2D(see Fig. 3 of Ref.[2]). In 3D, Metzger
correctly pointed out that the originally predicted distribution
cannot capture precisely the small and large forces at the
same time. This can be seen in the semilogarithmic scale(for
large forces) as shown in Fig. 7 of Ref.[2], as well as the
linear scale(for small forces) as shown in Fig. 1 here. The
inapplicability of the Shannon entropy as suggested by
Metzger could be a reason for the inaccurate representation
of the 3D results, but here, I first argue that a simple modi-
fication to the constraint in the free energy minimization can
remove the discrepancy in the 3D situation to a large extent.
Metzger’s argument against the use of the Shannon entropy
in the packing situation will be discussed in a later section.

II. MODIFIED CONSTRAINT FOR THE FORCE
PROBABILITY

The representation of the randomness of the packing by
the entropy functional implies an ensemble concept—i.e.,S
=k ln w, wherew is the number of different packing con-
figurations exhibiting the same force distributionPsfd and
subjected to the same external pressure. The constant-
pressure requirement among different replicas of the en-

semble should correspond to a requirement of the mean
strain of the packings being constant. Depending on the force
law in the system, the mean-strain constraint may or may not
be equivalent to the mean-force constraint. If the force law is
Hookean, as would be the case for Hertzian contacts in a 2D
situation, the mean-strain constraint is equivalent to the
mean-force constraint, since a Hookean force is proportional
to the strain it produces. Therefore, the predicted force dis-
tribution is still the same Gaussian form as in Eq.(8) of Ref.
[2]. The force normalization constant definingkfl should also
be the average force

f̄ =E
0

`

fPsfddf . s1d

In 3D Hertzian contact, however, the mean-strain constraint
and mean-force constraint are no longer equivalent. Using

FIG. 1. Computer-simulated force distributions in 3D amor-
phous packings, replotted in linear scale using the same data from
Fig. 7 of Ref.[2]. The discrepancy between the theoretical curves
and the simulated results are apparent in the small-force range.
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the 3D Hertzian force law given in Eq.s9d of Ref. f2g, the
mean strain of the contact can be shown to be

«̄ =E dR

R
Psfddf =

1

8R2S3R

Er
D2/3E f2/3Psfddf

=
1

8R2S3Rf̂

Er
D2/3

, s2d

where the notations are given in Sec. II B 1 of Ref.f2g. In

Eq. s2d here, f̂ =sef2/3Psfddfd3/2 is a geometrical mean of the
contact forces which is in general different from the arith-

metic mean in Eq.s1d, and hence settingf̂ constant produces

different effects from settingf̄ constant. The mean-strain
constraint in the 3D situation can be shown to yield the fol-
lowing force distribution instead of Eq.s11d in Ref. f2g:

Psfd = A expf− kskfl5/3 − lkfl2/3dg. s3d
Here, kfl= f / f̂ is the contact force normalized by the new

constantf̂ =(ef2/3Psfddf)3/2, instead of byf̄ as in Eq.s1d. The
k in Eq. s3d is defined in terms of the new normalization

constantf̂ as

k =
2

5R
S 3R

8Er
D2/3

f̂5/3 1

ku
. s4d

For any given value ofk, the normalization constantsA and
l can be calculated from the constraintsePskflddkfl=1 and
ekfl2/3Pskflddkfl=1, the latter being due to«̄ in Eq. s2d being
held constant. Figure 2 shows the force distributions pre-
dicted by Eq.s3d at different values ofk.

In Fig. 3 are replotted the simulated results in Fig. 1 in
both the semilogarithmic and linear scales, and it can be seen
that the simulated results at different applied pressures nearly
collapse onto a single curve, showing excellent agreement
with Eq. (3). Such a good agreement is the best available so
far from a theoretical derivation. The only exception may be
the statistics of large forces at the slightest applied pressure
of 0.001 GPa. It is not clear at this stage whether the discrep-

ancy at large forces under weak pressures is due to an intrin-
sic deficiency in using the Shannon entropy as suggested by
Metzger or just a result of numerical errors in the simulation.
The 3D calculations involved many more intergranular con-
tacts than the 2D and therefore the numerical uncertainties
are higher.

In the 2D Hertzian contact situation, as discussed above,
the results due to the mean-strain constraint are the same as
those from the mean-force constraint; i.e., Fig. 3 in Ref.[2]
still stands. In Ref.[2], the smallest pressure used(0.0001
unit) corresponds to a mean force of 2.67310−4 unit, which
leads to a mean strain of 0.0028 %. The deformation is al-
ready very small but the predicted Gaussian form still fits the
simulated results very well(see Fig. 4). To see the effects of
even smaller strains, two new calculations have been per-
formed at 0.000 01 and 0.000 001 unit of applied pressure,

FIG. 2. Theoretical force distribution for 3D Hertzian contact
using the mean-strain constraint. The normalized force in the ab-

scissa iskfl= f / f̂.

FIG. 3. Computer-simulated force distributions in 3D amor-
phous packings(same data from Fig. 1). (a) Logarithmic scale,(b)
linear scale for the probability axis. The normalized force in the

abscissa iskfl= f / f̂.
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corresponding to mean strains of 0.00028 %and 0.000028 %,
respectively. The results are shown in Fig. 4 and they are
found to lie on top of the 0.0001 unit curve; i.e., they can still
be fitted very accurately by a Gaussian curve. Hence, there is
no indication that the 2D force distribution at vanishing pres-
sures deviates from the Gaussian form predicted by Eq.(8)
of Ref. [2].

III. STATIC DETERMINACY VS INDETERMINACY

Metzger argues that the force distributions resulting from
different force laws must approach a universal form in the
limit of infinite grain rigidity. In the special case of the
Hookean force law, this conclusion leads to a dilemma situ-
ation which is explained here. A packing in which the con-
tacts obey a Hookean force law is in fact a linear elastic
structure. According to the principle of superposition in lin-
ear elasticity, the internal forces in such a structure must be
proportional to the applied loads at the boundaries. Hence if
we let the applied load(hydrostatic pressure in this case)
approach zero, corresponding to letting the granular rigidity
approach infinity, the forces cannot exhibit any odd behavior
other than proportionality with the applied load. Thus, as
long as the structure remains the same—and it will be so if
the load range concerned is small—the normalized force dis-
tribution Pskfld cannot change as the applied pressure tends
to zero. Therefore, if one accepts the force distribution to be
Gaussian at some small but finite strain, such as those shown
in Fig. 4, the samePskfld will be maintained if the strain
tends to zero from this strain. In the 2D simulations in Ref.
[2] and the new results in Fig. 4 here, the structure of the
packing is constant as long as the applied load is smaller than
,0.1 unit (see also Fig. 4 of Ref.[2]). Thus, thePskfld at
vanishing pressures must be the same as thePskfld at, for
example, 0.1 unit, 0.01 unit, 0.001 unit, and so on. The new
results in Fig. 4 here confirm this. However, Metzger cor-
rectly pointed out that at infinite grain rigidity, the problem is

statically determinate and so no force law is required to solve
the problem(or the problem does not involve strain), while
my argument here is for a statically indeterminate problem
which requires knowledge of the interaction force law for a
solution. It is unlikely that the Gaussian distribution valid for
finite strains in the Hookean force-law situation is in fact the
“universal” distribution Metzger proposed for statically de-
terminate packings irrespective of force law. Now it may be
possible that the zero-load limit of the “indeterminate” for-
mulation does not match the solution of the “determinate”
formulation of the same packing configuration. If this is the
case, this will be an interesting dilemma for some future
work to resolve. However, in actual experiments strains
rather than forces are measured, and also in all the simulated
results in the literature, force laws were prescribed. Thus
when these literature results are discussed, one is referring to
the “indeterminate” context.

IV. UNIFORMITY OF PHASE SPACE

Metzger’s main point in his Comment is that he chal-
lenges the use of the uniform-phase-space assumption for the
granular packing situation. He illustrates the unfavorable bi-
asing of weak forces by a special geometry in which two
forces are aligned. In my opinion, to analytically prove the
nonuniformity of the phase space of force is as difficult as to
prove the uniformity of it. Any thermodynamic model can
only treat equilibrium in a global scale but not equilibrium in
a local scale, which must also be satisfied. On the other hand,
to prove or disprove the uniformity of phase space, a full
solution to the local equilibrium problem is needed. How-
ever, an analytical solution to the local problem is intractable
without making assumptions but these themselves are diffi-
cult to justify. For example, the approximateq models as-
sume that the structure is regular but force transmission is
random, and these two are self-contradictory. In Metzger’s
model shown in Fig. 1 of his Comment, forcesf1 and f3 are
assumed to be aligned, and in a random packing it is impos-
sible that each grain has two aligning forces. Therefore, like
the prediction of theq model, Metzger’s Eqs.(8) and (9) in
his Comment can at best be regarded as approximate force
distributions because they are based on unrealistic features of
the random packing. They therefore should not be treated as
serious evidence against the Gaussian distribution or in sup-
port of the exponential tail.

Whether the phase space of force in a stressed packing is
uniform or not therefore remains as an open question. Cer-
tainly, the quality of fit of the predicted distributions to the
simulated ones as evident in Figs. 3 and 4 indicates that the
phase space of force is at least approximately uniform if not
fully uniform.

To conclude, the observed discrepancy between theory
and simulations in my original work can be removed by
choosing a more realistic constraint for the free energy mini-
mization. In the situation of Hookean contacts at least, there
is no evidence to indicate that the force distribution would
deviate from the Gaussian form at vanishing strains.
Metzger’s argument about the noninvolvement of the force
law in the statically determinate situation points to an inter-

FIG. 4. Computer-simulated force distributions in 2D amor-
phous packings(original Fig. 3 of Ref.[2] with new results for
0.000 01 and 0.000 001 unit of load added).

COMMENTS PHYSICAL REVIEW E 69, 053302(2004)

053302-3



esting dilemma against the superposition principle in linear
elasticity, unless the Gaussian form turns out to be the uni-
versal distribution in statically determinate packings. Finally,
Metzger’s comment that the entropy approach does not rep-
resent local equilibrium is valid, but a convincing local-
equilibrium model free of unrealistic constraints is yet to be
proposed.
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